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ABSTRACT 

In this paper, we present the results from two surveys related to data 

science applied to software engineering. The first survey solicited 

questions that software engineers would like to ask data scientists 

to investigate about software, software processes and practices, and 

about software engineers. Our analysis resulted in a list of 145 

questions grouped into 12 categories. The second survey asked a 

different pool of software engineers to rate the 145 questions and 

identify the most important ones to work on first. Respondents fa-

vored questions that focus on how customers typically use their ap-

plications. We also see opposition to questions that assess the per-

formance of individual employees or compare them to one another. 

Our categorization and catalog of 145 questions will help research-

ers, practitioners, and educators to more easily focus their efforts 

on topics that are important to the software industry. 

Categories and Subject Descriptors: D.2.9 [Management] 

General Terms: Management, Human factors, Measurement 

Keywords: Data Science, Software Engineering, Analytics 

1. INTRODUCTION 
Due to the increased availability of data and computing power over 

the past few years, data science and analytics have become im-

portant topics of investigation [1]. Analytics is commonly utilized 

by businesses of all types to better reach and understand their cus-

tomers [2]. Even sporting teams use analytics to improve their per-

formance as described in the book “Moneyball” [3]. Many software 

engineering researchers have argued for more use of data for deci-

sion making [4,5,6]. As more and more companies start to analyze 

their software data, the demand for data scientists in software pro-

jects will grow rapidly. Though Harvard Business Review named 

the job of Data Scientist as the Sexiest Job of the 21st Century [7], 

by 2018, the U.S. may face a shortage of as many as 190,000 people 

with analytical expertise and of 1.5 million managers and analysts 

with the skills to make data-driven decisions, according to a report 

by the McKinsey Global Institute [8].  

Several people have offered advice on the important questions that 

academic and industry data scientists should focus. In his “Two 

Solitudes” keynote at the Mining Software Repositories Vision 

2020 event in Kingston, Greg Wilson presented a list of ten ques-

tions for empirical researchers that a Mozilla developer sent to him 

in response to the following request: [9] 

“I'm giving a talk on Monday to a room full of software engineer-

ing researchers who are specialists in data-mining software re-

positories (among other things).  If you could get them to tackle 

any questions at all (well, any related to software or software de-

velopment), what would you want them to do, and why?” 

In his introduction to a panel on empirical software engineering at 

ESEC/FSE 2013, Bertrand Meyer emphasized the need for the soft-

ware engineering community to become more data-driven and to 

“shed the folkloric advice and anecdotal evidence.” He presented a 

list of 11 questions “crying for evidence” [10]. Meyer requested 

answers to be empirical, credible, and useful, the last of which he 

meant “providing answers to questions of interest to practitioners.” 

In this paper, we present a ranked list of questions that people in 

the software industry want to have answered by data scientists. The 

list was compiled from two surveys that we deployed among pro-

fessional software engineers at Microsoft (Section 3).  

1. In the first survey, we asked a random sample of 1,500 Mi-

crosoft engineers a question similar to Greg Wilson’s. We 

asked “Please list up to five questions you would like [a team 

of data scientists who specialize in studying how software is 

developed] to answer.” We received a total of 679 questions 

from 203 software engineers. We employed an open card sort 

to group them into 12 categories and create a set of 145 de-

scriptive questions (Section 4.1). 

2. We deployed a second survey to a new sample of 2,500 Mi-

crosoft engineers to help us prioritize the 145 descriptive ques-

tions by indicating the most important ones to be worked on. 

We received a total of 16,765 ratings from 607 Microsoft en-

gineers. These ratings additionally enabled us to identify dif-

ferences of opinion between various demographic groups, for 

example, questions that are more important to testers than to 

developers (Sections 4.2 and 4.3). 

Our findings suggest that engineers favor questions that focus on 

how customers typically use their applications. We also observe 

opposition against the use of analytics to assess the performance of 

individual employees or compare them with one another. 

The catalog of questions of 145 questions is relevant for research, 

industry practice, and software engineering education (Section 5). 

For researchers, the descriptive questions outline opportunities to 

collaborate with industry and impact their software development 

processes, practices, and tools. For those in industry, the list of 

questions identifies particular data to collect and analyze to find 

answers, as well as the need to build collection and analysis tools 

as industrial scale. Lastly, for educators, the questions provide 

guidance on what analytical techniques to teach in courses for fu-

ture data scientists, as well as providing instruction on topics of im-

portance to industry (which students always appreciate). As pointed 

out earlier [8], there will be huge demand for people who are edu-

cated enough to know how to make use of data. 

In this paper, we make the following contributions: 

 We provide a catalog of 145 questions that software engineers 

would like to ask data scientists about software. (Section 4.1) 
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 We rank the questions by importance (and opposition) to help 

researchers, practitioners, and educators focus their efforts on 

topics of importance to industry. (Sections 4.2 and 4.3)  

We issue a call to action to other industry companies and to the 

academic community. Please replicate our methods and grow the 

body of knowledge from this modest start. To support replication, 

we provide the survey instructions and the full list of 145 questions 

with ratings in a technical report [11]. 

2. RELATED WORK  
The work related to this paper falls into software analytics and (em-

pirical) collections of software engineering questions. 

Software Analytics is a subfield of analytics with the focus on soft-

ware data. Davenport, Harris, and Morison [2] define analytics “as 

the use of analysis, data, and systematic reasoning to make deci-

sions.” Software data can take many forms such as source code, 

changes, bug reports, code reviews, execution data, user feedback, 

and telemetry information. Analysis of software data has a long tra-

dition [12] in the empirical software engineering, software reliabil-

ity, and mining software repositories communities. Still, according 

to an Accenture survey among 254 US managers in industry, up to 

40 percent of major decisions are based on gut feel rather than facts 

[13]. With the big data boom in recent years, several research 

groups pushed for more use of data for decision making [4,5,6] and 

shared their experiences collaborating with industry on analytics 

projects [14,5,15]. Software analytics has been the dedicated topic 

of tutorials and panels at the ICSE conference [16,17], as well as 

special issues of IEEE Software (July 2013 and September 2013). 

Zhang et al. [18] emphasized the trinity of software analytics in the 

form of three research topics (development process, system, users) 

as well as three technology pillars (information visualization, anal-

ysis algorithms, large-scale computing). Buse and Zimmermann ar-

gued for a dedicated analyst role in software projects [6] and pre-

sented an empirical survey with 110 professionals on guidelines for 

analytics in software development [19]. They identified seven typ-

ical scenarios and ranked popular indicators among professionals. 

Buse and Zimmermann’s focus was on the usage of analytics in 

general (i.e., how people make decisions), rather than on collecting 

and ranking individual questions, which is the focus of this paper. 

Information Needs. Several researchers have identified infor-

mation needs and created catalogs of frequently asked questions. 

(None of them focused on questions to data scientists, however.) 

 Sillito et al. [20] observed 25 developers to identify a catalog 

of 44 questions that programmers ask during software evolu-

tion tasks. 

 Phillips et al. [21] interviewed 7 release managers in a large 

company to identify information needs related to integration 

decisions when releasing software. 

 Ko et al. [22] observed 17 developers at Microsoft and identi-

fied 21 types of information that they need. 

 Fritz and Murphy [23] interviewed 11 professional developers 

to identify 78 questions developers want to ask, but for which 

support is lacking due to lack of integration between different 

kinds of project information. 

 Begel et al. [24] prioritized 31 different information needs 

about inter-team coordination in a survey among 110 software 

professionals. 

 Breu et al. [25] identified 8 categories of information needs 

related to the interaction between developers and users based 

on a sample of 600 bug reports. 

In contrast to the studies above, our study focuses on questions that 

can be answered through data analysis. The scale of our study is 

also larger: the findings in this paper are based on input from 800+ 

software professionals in many different roles across three engi-

neering disciplines (development, testing, program management).  

3. METHODOLOGY 
The findings in this paper are based on data from two surveys: 

1. An initial survey to solicit questions that software profession-

als would like data scientists to answer. 

2. A second survey to rank and prioritize questions, as well as 

identify questions that are more popular among certain groups 

of software professionals. 

This section describes the surveys and the analysis of the responses 

in more detail. This process is also summarized in Figure 1, to 

which we refer with the circled numbers (  to ). 

3.1 Initial Survey 
Our initial survey  was based on a single question: 

Suppose you could work with a team of data scientists and data 

analysts who specialize in studying how software is developed.  

Please list up to five questions you would like them to answer. 

Why do you want to know? What would you do with the answers? 

We additionally asked, “Why do you want to know?” and “What 

would you do with the answer?,” in order to gain context for the 

response. These questions were based on feedback from two pilot 

surveys sent earlier to 25 and 75 Microsoft engineers. The feedback 

 

Figure 1. Overview of the research methodology. 

Suppose you could work with a team of data scientists and data analysts 

who specialize in studying how software is developed. Please list up to 

five questions you would like them to answer.

 SURVEY 203 participants, 728 questions R1..R728

 CATEGORIES 12 categories C1..C12

 DESCRIPTIVE QUESTIONS 145 questions Q1..Q145 

R1

R111

R432

R544

R42 R439

R99

R528

R488 R134

R355

R399
R380

R277

R505

R488

R409

R606

R500

R23

R256

R418

R645
R220

R214

R189
C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

R369

R169

R148

R567 R88

R496

R256

R515

R601

R7

R12

R599

Q22 Q23

Q21

We used a split questionnaire design. Each participant received a subset 

of the questions Q1..Q145 (on average 27.6) and was asked:

In your opinion, how important is it to have a software data analytics team 

answer this question? 

[Essential | Worthwhile | Unimportant | Unwise | I donôt understand]

 SURVEY 607 participants, 16 765 ratings

 TOP/BOTTOM RANKED QUESTIONS

 DIFFERENCES IN DEMOGRAPHICS

We used an open card sort to group questions into categories.

We summarized each category with a set of descriptive questions.
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also identified the need to seed the survey with data analytics ques-

tions. We supplied the following seed questions from the pilot re-

sponses, Greg Wilson’s list [9], and from our own experiences: 

Here are examples of questions that others have already asked. 

 Do unit tests save more time in debugging than they take to 

write/run/keep updated? 

 Do distributed version control systems offer any advantages 

over centralized version control systems?  

 Is it really twice as hard to debug as it is to write the code in 

the first place? 

 When does it make sense to reinvent the wheel vs. use an ex-

isting library? 

 What impact does code quality have on our ability to monetize 

a software service? 

We sent the initial survey to 1,500 randomly chosen Microsoft soft-

ware engineers in September 2012. Since monetary incentives have 

been found to increase the participation in surveys [26], we in-

cented them with the opportunity to enter a raffle for a $250 Visa 

Check Card. We received a total of 728 questions in 203 responses, 

for a response rate of 13.5%. This rate is comparable to the 14% to 

20% [28] and 6 to 36% [27] reported for other surveys in software 

engineering. The respondents had a median experience of 10 years 

in the software industry. 36.5% were developers, 38.9% testers, and 

22.7% program managers. 

To group questions into categories, we used an open card sort [28]. 

 Card sorting is a technique that is widely used to create mental 

models and derive taxonomies from data. In our case, card sorting 

also helps us to deduce a higher level of abstraction and identify 

common themes. Cart sorting has three phases: in the preparation 

phase, we create cards for each question written by the respondents; 

in the execution phase, cards are sorted into meaningful groups with 

a descriptive title; finally, in the analysis phase, abstract hierarchies 

are formed in order to deduce general categories and themes. 

Our card sort was open, meaning we had no predefined groups; in-

stead, we let the groups emerge and evolve during the sorting pro-

cess (see Figure 2). By contrast, a closed card sort has predefined 

groups, which is typically used when the themes are known in ad-

vance. This was not the case for our study. 

Both authors jointly sorted cards over a series of several sessions 

until we agreed on a set of categories and subcategories. We de-

cided to discard 49 out of the 728 cards (leaving 679 cards) because 

they only made general comments on software development and 

did not inquire about any topic at all. Ultimately, this resulted in 12 

categories, each with one to thirteen subcategories (Table 1 breaks 

this down in detail). In this paper, we focus only on the main cate-

gories (you may find the list of subcategories in a technical report 

[11]). We discuss the individual categories in Section 4.1. After 

each one, we list representative examples of respondent-provided 

questions that were sorted into that category.  

Many questions were the same or similar to the others. We also 

found them awkward to work with; many were verbose, and others 

were overly specific. We decided to create a set of descriptive ques-

tions  that more concisely described each category (and sub-cat-

egory). We offer an example of respondent-provided questions and 

the more concise descriptive question we created. 

Respondent-provided questions: 

) “How does the quality of software change over time – does soft-

ware age?  I would use this to plan the replacement of compo-

nents.” 

) “How do security vulnerabilities correlate to age / complexity / 

code churn / etc. of a code base?  Identify areas to focus on for 

in-depth security review or re-architecting.” 

) “What will the cost of maintaining a body of code or particular 

solution be?  Software is rarely a fire and forget proposition but 

usually has a fairly predictable lifecycle. We rarely examine the 

long term cost of projects and the burden we place on ourselves 

and SE as we move forward.” 

Descriptive question that we created: 

 How does the age of code affect its quality, complexity, main-

tainability, and security? 

The number of descriptive questions for each category is shown in 

Table 1; in total, we created 145 descriptive questions. The full list 

is also available in our technical report [11]. 

3.2 The Rating Survey 
In order to rank and prioritize the 145 descriptive questions, we 

created a second survey.  However, we felt that asking respond-

ents to rate all of the questions would have put too much burden on 

them, resulting in a low response rate and high drop-off rate [29]. 

Therefore, we chose a split questionnaire survey design [30] where 

the questionnaire is split into components of which each individual 

respondent is administered a subset. Comparisons between split 

questionnaires and complete surveys have found that that little in-

formation is lost [30].  

In our case, our components were the categories we identified in 

the card sort. To make them more similar in size, we divided the 

 

Figure 2. Photo of some of the subcategories that emerged 

during the open card sort. 

Table 1. The 12 categories identified in the card sort. 

 

Category Subcategories

Descriptive 

Questions

Bug Measurements BUG 23 3% 4 7

Development Practices DP 117 16% 13 28

Development Best Practices BEST 65 9% 6 9

Testing practices TP 101 14% 5 20

Evaluating Quality EQ 47 6% 6 16

Services SVC 42 6% 2 8

Customers and Requirements CR 44 6% 5 9

Software Development Lifecycle SL 32 4% 3 7

Software Development Process PROC 47 6% 3 14

Productivity PROD 57 8% 5 13

Teams and Collaboration TC 73 10% 7 11

Reuse and Shared Components RSC 31 4% 1 3

Discarded 49 7%

Total 728 100% 60 145

Cards
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Development Practice category in half and combined small catego-

ries together (Bug Measurements with Development Best Prac-

tices; Productivity with Reuse and Shared Components; and Ser-

vices with Software Development Lifecycle). This resulted in 10 

components (blocks) of descriptive questions. Each participant in 

our survey was presented with two blocks chosen at random, and 

asked to rate each descriptive question within. 

In your opinion, how important is it to have a software data 

analytics team answer this question? 

 Essential 

 Worthwhile 

 Unimportant 

 Unwise 

 I don't understand 

The asymmetric survey response scale was inspired by a model for 

product development and customer satisfaction created by Profes-

sor Noriaki Kano [31]. It measures three aspects: must have (Es-

sential), nice to have (Worthwhile), and detraction (Unwise). 

We sent the rating survey to 2,500 randomly chosen engineers who 

had not been invited to the initial survey. Respondents were enticed 

to respond with the opportunity to enter into a raffle for a $250 Visa 

Check Card. We received 607 responses to this survey, for a re-

sponse rate of 24.3%. This rate was better than our initial survey, 

possibly because of the simpler multiple-choice format. 29.3% of 

the respondents were developers, 30.1% were testers, and 40.5% 

were program managers. The 607 survey respondents submitted a 

total of 16,765 ratings. On average, each respondent rated 27.6 

questions, while each question was rated by 115.5 respondents. The 

respondents used most of the scale, on average, 3.5 of the 5 possible 

answers. 45% of respondents used 4 or all 5 answers, and only three 

respondents gave the same answer for all questions that they rated.  

For the analysis of responses we focused on the top- and bottom-

rated questions as well as differences in ratings by demographics. 

Top-Rated/Bottom-Rated Questions.  

We followed the advice of Kitchenham and Pfleeger [33] to dichot-

omize the ordinal Kano scale to avoid any scale violations. We 

computed the following percentages for each descriptive question: 

 Percentage of “Essential” responses among all responses 

Essential

Essential Worthwhile Unimportant Unwise 
 

 Percentage of “Essential” and “Worthwhile” responses 

among all responses (to which we refer as Worthwhile+) 

Essential Worthwhile

Essential Worthwhile Unimportant Unwise 
 

 Percentage of “Unwise” responses among all responses 

Unwise 

Essential Worthwhile Unimportant Unwise 
 

In addition, we computed the rank of each question based on the 

above percentages, with the top rank (#1) having the highest per-

centage in a dimension (Essential, Worthwhile+, or Unwise). 

In Section 4.2 of this paper, we report the descriptive questions that 

are the most desired (Top 20 Essential, Top 20 Worthwhile+) and 

the most opposed (Top 10 Unwise). The survey results for all 145 

questions are available as a technical report [11]. 

Rating Differences by Demographics.   

Our survey was not anonymous, so we could enrich the response 

data with the following demographics from the employee database: 

 Discipline: Development, Testing, Program Management 

 Region: Asia, Europe, North America, Other 

 Number of Full-Time Employees who are directly or indirectly 

reporting to the respondent. 

 Current Role: Manager, if the respondent has reports (Number 

of Full-Time Employees > 0); Individual Contributor, if the 

respondent has no reports.  

 Years as Manager: The number of years that the respondent 

has ever worked in a management role over his tenure at Mi-

crosoft (decimals OK). Respondents who are individual con-

tributors have management experience if they had been a man-

ager at Microsoft in the past, but were not managers now. 

 Has Management Experience: yes, if Years as Manager > 0; 

otherwise no. 

 Years at Microsoft: The number of years that the respondent 

has been working at Microsoft (decimals OK). 

To identify the demographics which influenced the responses for 

individual questions, we built stepwise logistic regression models. 

For each of the 145 descriptive questions, we built a model with the 

presence of an Essential response (yes/no) as dependent variable 

and the above demographics as independent variables. We built 

similar models for the presence of Worthwhile+ and Unwise re-

sponses respectively. In total 435 models were built, three for each 

descriptive question. 

We used stepwise regression to eliminate demographics that did not 

improve the model for a given question and a given response. In 

addition, we removed demographics for which the coefficient in the 

logistic regression model was not statistically significant at p<.01. 

For example, for Question 121 “How can we make it easier for peo-

ple to find and use commonly used tools?” and the response “Es-

sential”, after stepwise regression, the logistic model included the 

demographics Discipline=Testing, Discipline=Software Develop-

ment, Number of Full Time Employees, and Has Reports=yes. 

However, the coefficient was only statistically significant at the 

0.01 level for Discipline=Testing. In this case, we report the differ-

ence for the Discipline demographics. Our analysis revealed 29 

cases where demographics responded differently to questions, 

which we will discuss in Section 4.3. 

3.3 Limitations / Threats to Validity 
Drawing general conclusions from empirical studies in software en-

gineering is difficult because any process depends on a potentially 

large number of relevant context variables [34]. Since our study 

was performed with Microsoft engineers, we cannot assume that 

the results will generalize outside of Microsoft. However, there is 

nothing specific or different in this study which prevents replication 

at other companies or in the open source domain. Replicating our 

study in different organizational contexts will help generalize its 

results and build an empirical body of knowledge. To facilitate rep-

lication, both of our surveys and our list of 145 descriptive ques-

tions are available in a technical report [11]. 

There are some frequent misconceptions about empirical research 

within one company – it is not good enough, provides little value 

for the academic community, and does not contribute to scientific 

development. Historical evidence shows otherwise. Flyvbjerg pro-

vides several examples of individual cases that contributed to dis-

covery in physics, economics, and social sciences [35]. Beveridge 

observed that for social sciences, “more discoveries have arisen 

from intense observation than from statistics applied to large 

groups” (as quoted in Kuper and Kuper [36]). Note, this should not 

imply that research focusing on large samples or entire populations 
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is not important. On the contrary, for the development of an empir-

ical body of knowledge, both types of research are essential [33]. 

4. RESULTS 
The goal of this research was to uncover the kinds of software data 

analytics questions that professional software engineers want to 

ask. While the research literature has informed our own understand-

ing, the software engineers we surveyed at Microsoft are informed 

by their own experiences designing, planning, building, testing, and 

deploying very large software products. In this section, we report 

on the results from our two surveys and subsequent data analyses. 

4.1 Question Categories 
From the 679 questions we received during our initial survey, we 

found out that our respondents are curious about a wide variety of 

topics that they would like to have a team of data scientists answer. 

Our card sort enabled us to group these questions into 12 categories, 

each described below. After each category, we list several of the 

respondents’ questions to illustrate the diversity of their interests.  

Bug Measurements (BUG) – Respondents were curious about 

many aspects of software bugs: where they are found in code and 

in the product design, which bugs are most commonly made by de-

velopers, where in the application lifecycle they are caught, both 

before and after the product ships, how much it costs to fix bugs, 

and how well tool automation helps to mitigate them. In addition, 

some respondents were curious about whether bug counts should 

be used to measure product quality and developer effectiveness. 

) “For each bug, at what stage in the development cycle was the bug 

found, at what stage was it introduced, at what stage could it have been 

found?” 

) “Are there categories of mistakes that people make that result in hot-

fixes after the fact? For example, date/time mistakes, or memory allo-

cation mistakes, etc.” 

) “Have you ever had your spec document worked through thoroughly 

by QA or a computer scientist/theorist to detect every single edge case 

beforehand? Did it help? Was it worth the effort?” 

Development Practices (DP) – Respondents asked about all kinds 

of code-oriented practices, including debugging, performance pro-

filing, refactoring, branching in repositories, code reviewing, com-

menting, and documenting code. In addition, respondents ex-

pressed concern about development costs due to legacy code, exe-

cution telemetry, customer telemetry, inaccurate effort estimation, 

and product risk caused by code changes.  

) “How can I judge when adding telemetry/instrumentation to code 

will pay off vs. when it will just tell me things I already know?” 

)  “We are often told that code comments are important to assist oth-

ers understand code, but is this really true?” 

) “Do many eyes make bugs shallow?  Where is the break-even?” 

) “What is the net cost of refactoring legacy code so that it can be 

covered with unit tests, compared to leaving legacy code uncovered and 

making changes in it?” 

) “What are the provably best metrics to track during design/planning 

to determine project complexity and cost? What is the expected margin 

of error?” 

Development Best Practices (BEST) – This category resembles 

the Development Practices category above, but respondents were 

specifically interested in the best (or worst) way to conduct a soft-

ware practice. For example, respondents want to know the right 

technique for migrating between software versions, the best way to 

track work items, the right time to use formal methods for software 

analysis, or which criteria should influence the decision to use a 

particular programming language or API.  

)  “What are the best and worst practices that teams that miss dead-

lines, or slip beyond their release schedule call out? It would be great 

to note what practices teams adopt and/or cut when they are feeling 

pressured to meet certain deadlines.” 

) “Could machine learning be used to provide better coding guide-

lines and best practices?” 

) “How many times does a piece of code is re-written?  Is it better to 

write code quickly and then iterate on it, or do a longer process of plan-

ning and just write it ‘once’?” 

) “Have you ever written a loop invariant to prove that your algorithm 

terminates? Did it help?” 

) “What's the recommended way to detect/locate PII (personally iden-

tifiable information) inside arbitrary data? Are there any guidelines on 

how to detect it (e.g. shared rulesets?)” 

) “What are the time benefits to strict coding standards when code 

maintenance is inherited by another dev?” 

) “Which coding guidelines/patterns have the most effect on code 

quality (e.g. small functions, lower complexity metrics, removal of du-

plicate code)?” 

) “How long does it take to gain a payoff from moving to new soft-

ware-writing tools?” 

Testing Practices (TP) – Testing was the most diverse category, 

covering test automation, testing strategies, unit testing, test-driven 

development, test coverage, and test case elimination. In addition, 

respondents were interested in test processes, for example, writing 

tests: who should do it and when should it happen, sharing tests and 

test infrastructures across teams, and measuring the effectiveness 

of particular kinds of tests in finding impactful bugs.  

)  “What is the cost/benefit analysis of the different levels of testing 

i.e. unit testing vs. component testing vs. integration testing vs. business 

process testing?” 

) “How much percentage of development time needs to be spent on 

unit testing to ensure quality? At what point does it become too much 

time spent on writing test for every line?” 

) “What's the useful lifetime of a test? At what point does the test be-

come so unlikely to uncover an issue that it isn't worth the maintenance 

and infrastructure cost of keeping it running?” 

) “How many spec/code issues were found thanks to the creation of a 

Test Design Spec?” 

) “What value is there from investigating regression data to improve 

future code quality if the regressions could not be found internally?” 

Evaluating Quality (EQ) – Respondents’ questions included code 

optimization tradeoffs, the best metrics for deciding whether to ship 

software, complexity metrics, code duplication, the relationship be-

tween test coverage and customer feature usage, legacy and aging 

codebases, and the most common causes of poor software quality. 

This category is perhaps the most similar to what one would find in 

the research literature. 

) “Some means to get a relation defined between crashes found in real 

world and tests in our collateral which hit the same code path. Knowing 

we hit this code path but still we have a crashing bug in there would be 

good to know.” 

) “Is there a difference in code coverage and number of actionable 

code bugs with respect to tests developed in native Win32 vs. managed 

code?” 

) “Do teams who leverage code coverage for more than reporting cov-

erage percent to management deliver higher-quality software?” 

) “How much self-hosting/beta time does a feature of a certain com-

plexity need before it can be considered reliable?” 

) “How much do existing bugs in a code base affect the velocity with 

which new features can be added to that code base?” 

Services (SVC) – Many questions concerned developing software 

for the cloud. Some concerned how to change development and 
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testing practices when migrating software to the cloud, while others 

referenced operations and performance measurement. A set of re-

spondents were interested in the effects on customer retention and 

monetization caused by moving to more frequent, smaller releases 

from larger, less frequent releases.  

) “What are the KPIs that are used in managing our on-line services 

today? This should be as standardized as possible.” 

) “Do distributed systems scale better than centralized systems with 

vertical/horizontal scaling?” 

) “When does it make sense to change a helper library to a service of 

its own?” 

) “What’s the best approach for testing in production, without affect-

ing the live production data and compromising on the performance, 

while being able to test and regress all the functionality?” 

) “For online service, agility and code quality are always what we 

want to achieve. Which is more important?” 

Customers and Requirements (CR) – This category contained the 

majority of the concerns about customer interests, ultimately focus-

ing on how customers might react to various development 

tradeoffs, for example, the most liked and important features, the 

necessity of backward compatibility, or the impact of testing in pro-

duction. Respondents were also interested in the payoff that arises 

from investing in specifications to various degrees, and of the costs 

associated with increasing customer input into software design.  

) “How many features of the s/w are used by people and at what per-

centage? It will help me understand what is the impact/ROI on adding 

a new complex feature in terms of the investment we put to add new 

feature vs. its impact on user.” 

) “How do new free online versions of apps impact sales and revenue 

of the full pay versions?” 

) “Does Testing in Production hurt the reputation or perception of 

quality of product?” 

) “What factors should be considered before deprecating features?” 

) “How do we determine what problems our customers are having 

with our software?  I would like to know what is failing in our software 

when our customers use it.” 

) “Is there a correlation between the level of detail in a functional/re-

quirements spec and the accuracy of dev estimates based on it?” 

Software Development Lifecycle (SL) – All of the questions in 

this category regarded time as a vital factor in designing the soft-

ware lifecycle. For example, respondents wanted to find out how 

development time should be allocated between planning, design, 

coding, and testing, and of the impact this allocation might have on 

the software.  

) “From an efficiency standpoint, how detailed should dev design docs 

be before just starting to code?” 

) “How do we monetize the intended savings when a decision is taken 

to make a change in product design? For example, if we mitigate a 

launch risk, how do we figure out the money saved if the risk never 

become an issue? i.e. If I have $150 to spend, should I spend it on back 

up sensors or bigger mirrors?  Which investment would save me more 

money? How do I determine that?” 

) “What has a bigger impact on overall product quality, up front 

standards and best practices for dev, or longer testing and bake time 

before product release?” 

) “Do shorter release cycles result in a better quality product? A more 

feature-filled product?” 

Software Development Process (PROC) – The choice of software 

methodology was on respondent’s minds when they answered this 

question. In what ways is Agile better than Waterfall? What are the 

benefits of pair programming? Do particular methodologies work 

better for cloud services than for shrink-wrapped products? Others 

were interested in whether Microsoft would benefit from a com-

pany-wide software process and tool chain, and if so, how it should 

be managed. 

) “How is Agile process model more or less efficient in when it comes 

to number of bugs, meeting deadlines, customer satisfaction, work-life 

balance of Dev/Test/PM?” 

) “Which software development model(s) are most successful in pro-

ducing great software?” 

) “Is it more efficient for the company to have one consistent process 

for building software that all projects use, rather than each team/divi-

sion/project doing it their own way?” 

) “In an organization that is running Scrum (or any agile flavor) de-

velopment cycles, how does it meet the challenge of leaving time for 

innovation?” 

Productivity (PROD) – For many respondents, this category is 

what they think of when they hear the term “software data analyt-

ics,” and what many of them feel is the fear of the consequences 

caused by being unfairly judged by management. Questions in this 

category included investigating the quality of many different proxy 

metrics for measuring the productivity of software developers, and 

understanding the relationship between individual productivity and 

team or product success. Some respondents wanted to know how to 

monitor their own or their team’s productivity, for instance, when 

learning a new codebase, or working with a new team member or 

dealing with the issues caused for a team member leaving.  

) “Are there measurable differences in productivity between experi-

enced developers with CS degrees and developers with unrelated de-

grees or no degrees?” 

) “Are daily Scrum status meetings effective?” 

) “Does peer [sic] programming improve code quality and through-

put?” 

) “How does productivity vary between open work spaces and tradi-

tional offices?” 

) “Does churn in organizations cause software development to slow?  

As people move between orgs, do we see a slowdown in productivity?” 

) “Are more senior staff actually more productive?” 

) “How do we measure the productivity of our engineers?  Which en-

gineer is more productive?” 

) “How do we measure the productivity or business savings with a 

specific feature or toolset?” 

) “Does a person’s language, age, experience or gender affect the 

bugs s/he may introduce/find?” 

) “How well am I utilizing my resources? What trace is left by activi-

ties per person? Not just code changes, but bug database changes, doc 

repository changes, etc.” 

Teams and Collaboration (TC) – Respondents here cared about 

team makeup, i.e. how many people of various development roles 

should be on a team, and how big it should be for a given feature 

size. A second aspect of the questions wanted to learn which prac-

tices could improve sharing and collaboration within and between 

teams, especially relating to shared knowledge, code ownership, 

task status, and commonly used tools. 

) “How can we share knowledge more effectively to code faster? 

There're a lot of people who already have the knowledge, but don't have 

the time to share it or just don't care to share it.” 

) “Is integrated engineering (i.e. elimination of the Test organiza-

tions) a better use of budgets and resources than having Dev, Program 

Management, and Test?” 

) “How can I find the best developer contact for a piece of apparently 

'abandoned' code?” 

) “What is the optimal team size N for a feature of scope M?” 

) “How much time/week do you spend updating/sending/reporting 

status to other people?” 
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) “How does one improve relations when doing cross-org collabora-

tions?” 

Reuse and Shared Components (RSC) – This was the smallest 

category to come from our card sort, and concerned one main issue: 

when should code be written from scratch vs. reused from another 

codebase? Respondents wanted to know the cost of searching for 

the right code, and the potential impact caused by just linking to it 

vs. copying it wholesale.  

) “Reusing an existing library is always good and easy. What’s the 

best way to reuse an existing library if it matches the functionality we 

are looking for, but does not match the architecture of our project?” 

) “When is it best to create your own UI model rather than adopt a 

standard that might be familiar, but not fit your use exactly right?”  

) “Do shared codebases actually reduce developer productivity and 

innovation rates at the company?” 

) “How can I find out if someone else has already solved a similar 

problem before, e.g., caching, datatype conversion etc.?” 

 

Category Relationships – The categories exist in a set of relation-

ships, having to do with people and the activities that connect them. 

In Figure 3, we show an affinity chart with five job roles (drawn as 

boxes) that were invoked in the respondents’ questions: developer, 

tester, program manager, customer, and data analyst. Nearby each 

role are ovals listing popular activities done by people in those 

roles, the attributes of which drew the attention of the respondents. 

The lines drawn from the data analyst link her investigation and 

analyses to various development activities (some of the activities 

are linked together themselves). The three diamonds in the center 

of the figure indicate that collaboration, knowledge sharing, and 

training are three aspects that affect personnel in all job roles. Fi-

nally, shapes drawn with a double border indicate cross-cutting at-

tributes—they apply across all of the roles, the activities, and the 

entire software product and development process itself.  

4.2 Top-Rated/Bottom-Rated Questions 
Table 2 shows the questions with the highest percentages for the 

“Essential” and “Worthwhile or higher” (Worthwhile+) responses. 

In the table, we show the Top 20 questions for both Essential and 

Worthwhile+, however, they overlap significantly. As a result, only 

24 questions are shown. In addition to the question, the table shows 

the percentage of respondents who selected Essential, Worth-

while+, and Unwise as well as the corresponding ranks. The table 

is sorted in decreasing order by the Essential percentages.  

One thing we noticed about the Top 20 list is the striking fraction 

of questions that are concerned about customers. Nine questions 

(marked with icon ´, Q27, Q18, Q28, Q66, Q19, Q131, Q92, Q25, 

and Q17), including the top two, demonstrate a concern by program 

managers, developers and testers that they plan, design, implement, 

test, and profile the features that match what the customers expect 

and use, and benefit the customers the most. Another eight ques-

tions (marked with icon @, Q115, Q74, Q84, Q100, Q83, Q2, Q3, 

and Q102) focus on the engineer and the effects of software devel-

opment practices and processes on her work. The remaining seven 

questions (marked with icon Î, Q50, Q86, Q40, Q42, Q59, Q1, and 

Q60) are chiefly concerned with product quality issues.  

In Table 3, we show the 10 questions with the most opposition, by 

which we mean the highest percentages for the “Unwise” response 

(sorted in decreasing order by the Unwise percentage). 

Of the questions with the most opposition in Table 3, the top five 

are about the fear that respondents had of being ranked and rated. 

This may be due to the impact these ratings could have on the em-

ployee’s yearly performance review, which include the possibility 

of job termination for poor performance. This fear has been seen 

before in companies that employ employee metrics collection and 

evaluation systems [37]. 

The other questions deemed unwise to be answered explore situa-

tions deemed improbable (and unwise), for example achieving 

100% test coverage is not often possible or helpful even when it 

happens. Second, Microsoft’s feature teams employ a freedom of 

software tools and process that enables them to develop their own 

practices to suit their needs without requiring adherence to top-

down engineering management mandates. This explains why Q112 

and Q113 are on the list as well. Finally, the last two questions 

could be perceived as tautological statements by respondents—they 

might think that there is only one correct answer to each (e.g. Q34: 

Always, and Q24: As much as you can afford), which may or may 

not be true. 

Looking at the percentages of Essential in the Top 20 rankings, we 

notice that there is a steep drop from the Top 3 questions to the 

remainder. However, considering Worthwhile responses as well, 

we see a much smoother decline, in fact, for 140 questions, more 

than 50% of responses were Worthwhile or higher (Worthwhile+), 

indicating that many of the questions on the survey were worth hav-

ing a team of data scientists look into the answers.  

4.3 Rating Differences by Demographics 
Table 4 shows demographics for which we identified differences in 

the ratings of the questions. The table is grouped by Discipline (De-

veloper, Tester, Program Manager), Management Role (Manager, 

Individual Contributor), Work Region (North America, Europe, 

Asia), Years of Experience as a Manager, as well as Years Working 

at the Company.  

In addition to the question, we list the survey response for which 

the difference was observed (in column Response) and show (in the 

final column) how the question was rated differently by the respec-

tive demographic. The demographic with the highest rating (for the 

first three demographics) is highlighted in bold.   

To explain further, please look at the first entry of the table. Ques-

tion 5, “How many new bugs are introduced for every bug that is 

fixed?,” was rated by each Discipline differently with respect to the 

survey response Essential. Respondents in the Test discipline were 

more likely to rate the question as Essential (41.9%) than respond-

ents in the Development (27.3%) or Program Management (12.5%) 

disciplines. 

Developer Tester

Program 

Manager

Customer

Code 

Review
Refactoring

Test 

Strategy

Testing 

Methods

Development 

Methods

Dev Best Practices:

Coding

Architecture

Services

Version Control

PlanningWriting 

Specs

Gathering 

Requirements

Collaboration:

Cross-Role

Cross-Org

Training

Hiring

Data Analyst

P
ro

fi
lin

g
, 
T

e
le

m
e

tr
y

Knowledge 

Sharing

Bugs

Tools

Software 

Lifecycle

Software 

Development 

Process

 

Figure 3. Relationship between card sort categories. 
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For demographics related to years of experience (Years as Man-

ager, Years at Company), we report the change in odds per year. 

Look at the first entry under Years as Manager. For every year that 

someone spent as a manager, the odds that they rated Question 85, 

“How much cloned code is ok to have in a codebase?”, with the 

response Essential, increased by 36% in the survey. 

Discipline. Many of the differences here agree with common sense. 

Testers are more interested in test suites, bugs, and product quality, 

while developers care about migrating code between versions of a 

library (as also noted by McCamant and Ernst [38]). Testers also 

cared about helping people find commonly-used tools, the cost of 

customer input, and identifying someone to unify the company’s 

tools and processes.  

Management Role. More individual contributors than managers are 

interested in finding the legacy code in their systems and discover-

ing the optimal time in the development cycle to test their applica-

tion’s performance. It was surprising that more individual contrib-

utors than managers want to find out how to measure an employee’s 

productivity (the fourth-ranked Unwise question). We would have 

expected to see the opposite result. Managers are interested in find-

ing the most commonly used tools on software teams, possible to 

reduce cost and to improve their team’s productivity. 

Table 2. Questions with the highest “Essential” and “Worthwhile or higher” percentages.  

 
 

Table 3. Questions with the highest “Unwise” percentage (opposition).  

 

Percentages Rank

Question Category EssentialWorthwhile+ Unwise EssentialWorthwhile+ Unwise

´ Q27 How do users typically use my application? DP 80.0% 99.2% 0.83% 1 1 128

´ Q18 What parts of a software product are most used and/or loved by customers? CR 72.0% 98.5% 0.00% 2 2 130

Î Q50 How effective are the quality gates we run at checkin? DP 62.4% 96.6% 0.85% 3 6 125

@ Q115 How can we improve collaboration and sharing between teams? TC 54.5% 96.4% 0.00% 4 8 130

Î Q86 What are best key performance indicators (KPIs) for monitoring services? SVC 53.2% 93.6% 0.92% 5 12 106

Î Q40 What is the impact of a code change or requirements change to the project and tests?DP 52.1% 94.0% 0.00% 6 10 130

@ Q74 What is the impact of tools on productivity? PROD 50.5% 97.2% 0.92% 7 4 106

@ Q84 How do I avoid reinventing the wheel by sharing and/or searching for code? RSC 50.0% 90.9% 0.91% 8 19 108

´ Q28 What are the common patterns of execution in my application? DP 48.7% 96.6% 0.84% 9 5 127

´ Q66 How well does test coverage correspond to actual code usage by our customers? EQ 48.7% 92.0% 0.00% 10 16 130

Î Q42 What tools can help us measure and estimate the risk associated with code changes?DP 47.8% 92.2% 0.00% 11 15 130

Î Q59 What are effective metrics for ship quality? EQ 47.8% 96.5% 1.77% 12 7 91

@ Q100 How much do design changes cost us and how can we reduce their risk? SL 46.6% 94.8% 0.86% 13 9 123

´ Q19 What are the best ways to change a product's features without losing customers? CR 46.2% 92.3% 1.54% 14 14 103

´ Q131 Which test strategies find the most impactful bugs (e.g., assertions, in-circuit testing, 

A/B testing)? TP 44.5% 91.8% 0.91% 15 18 108

@ Q83 When should I write code from scratch vs. reuse legacy code? RSC 44.5% 84.5% 3.64% 15 45 37

What is the impact and/or cost of findings bugs at a certain stage in the development cycle? Q1 What is the impact and/or cost of findings bugs at a certain stage in the development cycle?BUG 43.1% 87.9% 2.59% 17 28 68

´ Q92 What is the tradeoff between releasing more features or releasing more often? SVC 42.5% 79.6% 0.00% 18 64 130

@ Q2 What kinds of mistakes do developers make in their software? Which ones are the most common?BUG 41.7% 98.3% 0.00% 19 3 130

´ Q25 How important is a particular requirement? CR 41.7% 87.4% 2.36% 20 32 73

Î Q60 How should we use metrics to help us decide when a feature is good enough to 

release (or poor enough to cancel)? EQ 41.1% 90.2% 3.57% 23 20 41

´ Q17 What is the best way to collect customer feedback? CR 39.8% 93.0% 1.56% 26 13 101

@ Q3 In what places in their software code do developers make the most mistakes? BUG 35.0% 94.0% 0.00% 41 10 130

Î Q102 What kinds of problems happen because there is too much software process? PROC 30.1% 92.0% 0.88% 57 16 116

Percentages Rank

Question Category EssentialWorthwhile+ Unwise EssentialWorthwhile+ Unwise

Q72 Which individual measures correlate with employee productivity (e.g., employee age, 

tenure, engineering skills, education, promotion velocity, IQ)? PROD 7.3% 44.5% 25.5% 142 141 1

Q71 Which coding measures correlate with employee productivity (e.g., lines of code, time 

it takes to build the software, a particular tool set, pair programming, number of 

hours of coding per day, language)? PROD 15.6% 56.9% 22.0% 126 131 2

Q75 What metrics can be used to compare employees? PROD 19.4% 67.6% 21.3% 110 112 3

Q70 How can we measure the productivity of a Microsoft employee? PROD 19.1% 70.9% 20.9% 113 104 4

Q6 Is the number of bugs a good measure of developer effectiveness? BUG 16.4% 54.3% 17.2% 122 136 5

Q128Can I generate 100% test coverage? TP 15.3% 44.1% 14.4% 127 142 6

Q113Who should be in charge of creating and maintaining a consistent company-wide 

software process and tool chain? PROC 21.9% 55.3% 12.3% 93 134 7

Q112What are the benefits of a consistent, company-wide software process and tool chain?PROC 25.2% 78.3% 10.4% 79 72 8

Q34 When are code comments worth the effort to write them? DP 7.9% 41.2% 9.6% 141 143 9

Q24 How much time and money does it cost to add customer input into your design? CR 15.9% 68.2% 8.3% 124 111 10
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Region. Half of the respondents working in Asia (mainly India and 

China) reported they wanted data scientists to look into employee 

productivity. One possible explanation may be that employees in 

Asia believe that striving for top personal performance is the best 

way to get ahead in one’s career, and uncovering the secret to im-

proved productivity is one way to improve their performance. Test-

ing questions also interested the employees from Asia likely due to 

the large fraction of software testing work that is done there. 

Years as Manager. In the survey responses, managers with more 

experience cared less about investigating the impact of old code on 

product quality than those with less experience. One confounding 

factor here is that teams that work on older software products (e.g., 

Windows, Office) usually have more experienced managers lead-

ing them, while less experienced managers may be more involved 

in newer products (e.g., various web services). 

Years at Company. Finally, the more experience an employee has 

at Microsoft, the less they are interested in having a data science 

team explore the managed/native code debate (often a religious-

type argument with no consensual answer possible), test-driven de-

velopment (another religious battle), or the preferred functions of 

people in testing and development roles (again, a religious battle). 

Employees who have been at Microsoft longer are better networked 

to share knowledge, thus would not need to rely on specialized tools 

as much to help them. Finally, the more experience a person has at 

the company, the less likely they are to want someone to look into 

Table 4. Rating Differences by Demographics. Questions that are among the top- /bottom-rated questions are shown in italics. 

 

Discipline

Question Category Response Dev Test PM

Q5 How many new bugs are introduced for every bug that is fixed? BUG Essential 27.3% 41.9% 12.5%

Q10 When should we migrate our code from one version of a library to the next? BEST Essential 32.6% 16.7% 5.1%

Q20 How much value do customers place on backward compatibility? CR Essential 14.3% 47.1% 18.3%

Q21 What is the tradeoff between frequency and high-quality when releasing software? CR Essential 22.9% 48.5% 14.5%

Q42 What tools can help us measure and estimate the risk associated with code changes? 

(Essential #11) DP Essential 34.5% 70.6% 40.4%

Q121 How can we make it easier for people to find and use commonly used tools? TC Essential 27.3% 48.6% 20.0%

Q24 How much time and money does it cost to add customer input into your design? (Unwise #10)CR Worthwhile+ 62.9% 88.2% 60.3%

Q113 Who should be in charge of creating and maintaining a consistent company-wide software 

process and tool chain? (Unwise #7) PROC Worthwhile+ 60.0% 71.9% 40.4%

Q132 How should we handle test redundancy and/or duplicate tests? TP Worthwhile+ 48.6% 81.1% 47.4%

Q134 Should we develop a separate test suite for servicing a product after we ship it? TP Worthwhile+ 32.4% 67.6% 67.6%

Management Role
Manager Ind. Contributor

Q29 How much legacy code is in my codebase? DP Worthwhile+ 36.7% 65.2%

Q31 When in the development cycle should we test performance? DP Worthwhile+ 63.3% 81.4%

Q70 How can we measure the productivity of a Microsoft employee? (Unwise #4) PROD Worthwhile+ 57.1% 77.3%

Q120 What are the most commonly used tools on a software team? TC Worthwhile+ 95.8% 67.8%

Region
Asia Europe  North America

Q70 How can we measure the productivity of a Microsoft employee? (Unwise #4) PROD Essential 52.9% 30.0% 11.0%

Q104 How do software methodologies affect the success and customer satisfaction of 

shrinkwrapped and service-oriented products? PROC Essential 52.9% 10.0% 24.7%

Q128 Can I generate 100% test coverage? (Unwise #6) TP Essential 60.0% 0.0% 9.0%

Q129 What is the effectiveness, reliability, and cost of automated testing? TP Essential 71.4% 12.5% 23.6%

Years as Manager
change in odds per year

Q85 How much cloned code is ok to have in a codebase? RSC Essential 36%

Q69 How does the age of code affect its quality, complexity, maintainbility, and security? EQ Worthwhile+ -28%

Years at Company
change in odds per year

Q16 What criteria should we decide when to use managed code or native code (e.g., speed, 

productivity, functionality, newer language features, code quality)? BEST Essential -23%

Q119 What are the best tools and processes for sharing knowledge and task status? TC Essential -18%

Q142 Should we do Test-Driven Development? TP Essential -19%

Q95 How much time went into testing vs. into development? SL Worthwhile+ -12%

Q123 How much distinction should there be between developer/tester roles? TC Worthwhile+ -14%

Q136 Who should write unit tests, developers or testers? TP Worthwhile+ -13%

Q142 Should we do Test-Driven Development? TP Worthwhile+ -13%

Q144 How should we do Test-Driven Development while prototyping? TP Worthwhile+ -14%

Q113 Who should be in charge of creating and maintaining a consistent company-wide software 

process and tool chain? (Unwise #7) PROC Unwise 15%
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who should create and maintain a standardized process and tool 

chain – a tacit acceptance of the status quo. 

5. IMPLICATIONS 
The results from our surveys represent a wealth of information that 

can serve to guide future work agendas for academic researchers, 

industry practitioners, and data science educators.  

5.1 Research  
One of the challenges faced in academic research is to choose a 

research topic that is novel, feasible, and impactful. While selection 

for novelty and feasibility are well understood and controllable, im-

pact often requires a partnership with external players from the soft-

ware industry. When the partnership is successful, these players can 

serve as test beds for research validation, experimentation, new 

tools, and ultimately, amplification of the researcher’s ability to 

widely spread his or her ideas and tools to software practitioners. 

Numerous studies have reviewed the performance of such partner-

ships to describe the impact of research and glean the attributes that 

make for successful technology transfer [39,40]. One of the main 

findings is that to be successful, the researchers need to discover 

and work on the problems that industry needs to be solved.  

In this paper, we have done the first part of that critical task, by 

identifying the questions that Microsoft, a very large, globally dis-

tributed company working on devices and services would like to 

see answered by data scientists knowledgeable about how software 

is developed. The questions in this paper can help guide academic 

researchers towards novel research problems to be studied and an-

alyzed, and algorithms, processes, and tools to be built and tested. 

Tools that are built enable researchers to easily disseminate their 

ideas and make it possible for others to understand and discuss the 

data analyses that support them.   

This should provide researchers a head start on the path to arrange 

academic-industry collaborative projects that address industry’s 

software analysis needs. As our study is replicated at other software 

companies, the potential to increase the diversity of new avenues 

of research will grow and provide increasing opportunities for re-

searchers to enjoy impactful research. 

5.2 Practice 
Software practitioners often face the challenge of building the right 

set of tools to help their business grow, without incurring too much 

cost to gather the required data, analyze it, and build tools to act on 

the results. Our results point at the kinds of data that should be reg-

ularly and sustainably collected in order to conduct data analyses 

that answer the engineers’ questions. We do wish to stress that just 

because the survey respondents asked a question, it does not mean 

that Microsoft (or academia) does not have tools and techniques to 

find the answers. However, it may be true that any preexisting tools 

that could solve these problems were probably unknown to or un-

usable by some of those respondents. Thus, even the presence of a 

question indicates an opportunity to build a better, simpler, more 

applicable tool, and/or find another way to distribute it to the engi-

neers that need it. 

Industrial practitioners from large, long-lived institutions have an 

added challenge of answering all of these questions at scale. For 

example, a recent study at Microsoft looked at failure and usage 

data from over a million computers to discover the difference in 

usage characteristics between pre-release and post-release failures 

[41]. An older study explored the linguistic attributes of identifiers 

in source code by analyzing over 45 million lines of code for Win-

dows 2003 Server [42]. Mockus analyzed 18 years of change man-

agement system data and 7 years of organizational reporting data at 

Avaya to discover the effects of organizational volatility on soft-

ware reliability [43]. Academic researchers can help with these 

tasks by applying their work to large corpora [44], but it is rare to 

find objects of study outside of industry that even come close to the 

size of typical industrial projects. Industry practitioners working to-

gether with academics could enable each to scale their data analyses 

and tools to work at the scale that industry requires. 

5.3 Education 
The set of 145 descriptive questions that we include in this paper 

can be useful to undergraduate and graduate educators who teach 

computer science, statistics, and data science courses. Computer 

science students commonly hold wildly inaccurate preconceptions 

about the character of the work they will encounter in their future 

software engineering careers [45,46]. Even beginning professional 

software engineers struggle to adapt the practices and processes 

they learned in university to the realities they find in industry 

[47,48]. This has not gone unnoticed by the industry either [49,50].  

The categories and diversity of the questions collected in this paper 

can be used in software engineering courses to illustrate real-life 

challenges that professional software developers face when build-

ing large, long-lived products for a variety of customers, including 

consumers, enterprises, and government institutions. In addition, 

the particular scenarios envisioned in the questions can be used to 

contextualize the pedagogical materials created and shared by edu-

cators to motivate and excite students with challenges faced by pro-

fessional software engineers, rather than the typical problems faced 

by Alyssa P. Hacker and Ben Bitdiddle [51]. 

Our corpus of questions can inform data science and statistics edu-

cators of particular analyses and techniques that are vitally im-

portant to the workings of, for example, decision support systems 

that help managers ensure a successful product release, or of em-

ployee productivity measurement tools that can accurately and 

fairly evaluate (and motivate) an engineering workforce. One can 

see from the examples of the respondents’ questions a range of so-

phistication in their phrasing and clarity. If these were students, one 

would hope for a coordinated set of lesson plans that would result 

in an increased ability to pose high-quality, specific, and actionable 

questions, as well as write coherent reports and follow up with the 

teams that needed the answers to help them continuously imple-

ment and measure process and/or tool improvements.   

6. CONCLUSION 
To understand the questions that software engineers would like to 

ask data scientists about software, we conducted two surveys: the 

first survey solicited questions and the second survey ranked a set 

of questions. The result of our analysis of the survey responses is a 

catalog of 145 questions grouped into 12 categories, as well as a 

ranking of the importance of each question. This catalog can help 

researchers, practitioners, and educators to better focus their efforts 

on topics that are important to a large company in industry. 

We hope that this paper will inspire similar research projects. In 

order to facilitate replication of this work, we provide the full text 

of both surveys as well as the 145 questions in a technical report 

[11]. With the growing demand for data scientists, more research is 

needed to better understand how people make decisions in software 

projects and what data and tools they need. There is also a need to 

increase the data literacy of future software engineers. Lastly we 

need to think more about the consumer of analyses and not just the 

producers of them (data scientists, empirical researchers). 
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